
Files and Directories

chdir ("/etc") change to directory /etc

@a = </etc/*>; @a gets list of files in /etc [glob]
@a = </etc/h*>; @a gets a list of h* files in /etc [glob]
while ($v= <bin/*> {
 @a = ~s/.*\/// remove path (before last slash -- greedy)

opendir (ETC,"/etc") || die "Cannot open dir /etc";
@a=readdir(ETC);
close (ETC); [dir handle see man readdir]

unlink ("file6"); remove file6 (like unix rm file6)
unlink ("*.c"); like rm *.c (also takes lists and variables)

rename (("top","bot") || die "Cannot rename top to bot.";
rename ("f","bin/f"); mv, but must repeat file name in destination

link ("hat","cap"); Unix ln hat cap
symlink ("hat","cap"); Unix ln -s hat cap
$x=readlink ("file"); returns name of symlink or undef (zero)

mkdir ("bin",0777) || die "cannot make dir bin" [x=1 w=2 r=4];
rmdir ("bin") || die "cannot remove dir bin";
chmod (0666,"f1","f2") Change permissions for files f1 and f2

System Processing

system ("who"); executes the shell process "who"
system ("who >file") && die "cannot create file right now"; return
 of true (nonzero) is an error -- opposite
 of Perl therefore && instead of ||

while (system ("grep aa fl")) } executes the shell process "grep"
push (@a, $_) } puts found lines in array @a

while (system ("grep", "aa", "fl")){same except list saves one shell
push (@a, $_) } process; therefore faster

$v = `grep aa fl`; `backtics` execute the shell process "grep"

foreach (`grep aa fl`) { puts found line in array @a
push (@a, $_);}

Regular Expressions

if (/abc/) { search for string "abc";
print "$_"; print line which "abc" occurs; $_ is the
} default variable

which (<>) { diamond operator: this routine is like grep
 if (/abc/) {
 print "$_";} search for "abc" from a file or files
}
/ca*t/ matches "ca" any number of "a's" and "t"
. matches any character but \n
/c.*?t/ the ? suppresses greedy: cat but not cattt
.* any char from present to end of the line

s/cat/dogs/ search "cat" substitute "dogs"
s/cat/dogs/g search every "cat" on a line, sub "dogs"
s/cAT/dogs/I ignore case for search

[Aa] match big or little A
[^A] anything but A
[0-9] every single digit
[a-zA-Z0-9] any single letter or digit
[\d] digits; every digit; same as [0-0]
[\D] anything not \d; same as [^0-9]
[\w] words; same as [a-zA-Z0-9]
[\W] same as [^a-zA-Z0-9]; any nonword char
[\s] white space; same as [\r\t\n\f]
[\S] sane as [^\r\t\n\f]

[a+] one or more a's in sequence (aaaaaa)
[a?] zero or one a
[a*] zero or more a's in sequence

$_ = "a bbbbb c";
s/b*/cat/; replaces bbbbb with cat "a cat c"
s/b{4}/cat/; replaced 4 b's with cat: "a catb c"
s/b {3.7}/cat/; replaces 3 to 7 b's: "a cat c" (greedy)

s/ant(.)/bug\1/ \1 gets paren value (\2 gets second paren)
 if ants then bugs; if anto then bugo
 (second parens referenced with \2)
/read|writ/ing/ alternative match (*reading or writing)
\b word boundary
/cat\b/ "cat" but not "catalog"
/\bcat/ "catalog" but not "concatenate"
/\bcat\b/ "cat" as a word, but not in a word
/^a/ matches a iff a is first char in string
/a$/ matches a iff a is last char in string
/a|b+/ match one a or any number of b's
/(a|b)+/ match any number of a's or b's

$a ="real food";
$x=$a=~/(.)\1/; $x is 1 (true): matches oo in "food"
$a =~s/oo/ee/ oo changed to ee; $a is now "real feed";

$1,$2,$3 \1\2 \3 etc can be accessed as $1 $2 $3 …

$_ = " they cannot write at all";
/w..te/; matches "write"
print $'; $' prints "they cannot"
print $&; $& prints "write"
print $'; $' prints "at all"

srand initialize random number
$n=rand(35) Sets $n to real number 0-34
$x=@v[rand (35)] $x gets a random element 0-34 of @v

Copyright © Forty Below Net Works 2000
horn@clarkson.edu
www.40-below.com

Perl Quick Reference

Variable and Arrays

$var = "contents" initialize a scalar variable
 $v = 45 value of $v is 45
 ($a,$b,$c) = (2,4,6) $a is 2, $b is 4, $c is 6
 (1..5) same as (1,2,3,4,5)
 ($a,$b) = ($b,$a) swap $a and $b
 ($d, @list) = ($a,$b,$c) $d gets value of $a, array @list
 gets value of $b and $c

@var = ("xx", "yy", "zz") initialize an array variable
 $var[0] recalls "xx"
 $var[1] recalls "yy"
 $#var index of last item (2 for @var)

@v = (1,2,3) initialize @v (for following examples)
 @w = (0,@v,4,five @w is now (0,1,2,3,4,five)
 @w = (six, @w) @w is now (six,0,1,2,3,4,five)
 $b = $w[1] $b is now 0
 $b = ++$w[1] $b and $w [1] are now 1
 $b = $w[1]++ $b is still 1 and $w[1] is now 2
 @c = @w[0,1,6] @c is now (six,2,five)
 @w[0,1] = (no,no) @w is now (no,no,1,2,3,4,five)
 $w[$#w] returns "five" (the last element)
 print "@w[0..$#w]" prints entire array

push(@v,$b) adds new element $b to (right) end of @v
pop(@v) removes last (rightmost) element of @v
chop(@v) removes last char from each element

unshift(@v,$b) adds new element $b to front of @v
shift(@v) removes first element of @v
reverse(@v) returns order of elements reversed
sort(@v) returns elements sorted (string sort)
 @v= sort{$a<=>$b}@v uses a numeric sort

 @v = (0,1,2,) initialize @v (for following examples)
 push(@v,6) @v is now (0,1,2,6)
 $b = pop(@v) @v is now (0,1,2,); $b is 6
 unshift(@v,$b) @v is now 6,0,1,2)
 $b = shift(@v) @v is now (0,1,2,) $b gets 6 again
 @x = reverse(@v) @x is (2,1,0); @v is still (0,1,2)
 @v = (2,3,1,11) initialize @v
 @v = sort(@v) @v is now (1,11,2,3,) (string sort!)
 @v = (aa,bb,cc) initialize @v
 chop(@v) @v is now (a,b,c,) [array context]

split(/separator/list) change string into array at separators;
 $a = "crazy-cool-cats";
 @c = split (/-/,$a); @c becomes ("crazy", "cool", "cats")
 $_ = "big blue bugs"
 @bugs = split $_ and whitespace defaults

join(separator, array) change array into string with separators
 $b = join("::", @c) $b becomes ("crazy::cool::cats"); any or no
 chars as separators, but no reg expressions

Hashes (Associative Arrays)

%map = ("pete", "xx", "jo", "yy", "ida", "zz")
 create associative array (pairs of values)
 $map{pete} recalls xx with key "pete" [note curly brackets]
 $map{jo} recalls yy with key "jo"
 $map {me} = "aa" creates key "me" with value "aa"
 $var{date} = 94 creates "date" with value of 94

@x = %map @x gets ("pete", "xx", "jo", "yy",
 "ida", "zz", "me", "aa")
%w = @x creates assoc. array from @x
keys (%map) lists keys of %map (e.g. use with foreach)
 in a scalar context returns no. of keys

each (%map) lists all current values of %map
delete $map{jo} deletes key and value; returns the value
 foreach (keys(%map)) {print ("$map{$_}\n");}

String Functions

chop($str) discards any last char of $str
chomp($str) discards \n if last char of $str
$v = chop($str) puts last char in $v
str eq str compares two strings (true if equal)
 $var eq "this" compare contents of var with str "this"
ne, lt, gt, le, ge, cmp (returns -1, 0, or 1)
 these are the other string operators

$str="ab" x 4; $str is now "abababab"
. concatenate two strings
.= concatenation assignment strings
($var =~ /reg. ex./) returns true if regular expressions found
 ($var =~ /^Pe/i) regular expression starts "pe", any case

$var -~s/ab/cd/; substitute -- all ab to cd (like sed)
$var =~tr/A-Z/a-z/; translate -- all $var to lowercase; like Unix tr
 $count = tr/a-z//; no change but counts no. of lowercase letters
 $var = tr/a-z/ /c c complement: changes any but a-z to space
 $var = tr/a-z/ABC/d delete: deletes any match of a-z that is not abc

$v = index($str,$x) find index no of beginning string $x in $str
 $v =("abc", "bc") $v gets 1; position of "a" is 0 (zero)

$v - rindex($str,$x)) index starts from right, but numbers from left
$v = ("cabc", "c") $v gets 3; position of first c from right

$v = substr($str, $start, $length) $v gets substring if found
 $start is index of string; $length is no of char
 $v = substr("cabc",1,3)returns "abc"; 3 ($length) could be omitted here
 $v = substr("cabc", -3,3) returns "abc"; negative counts back from right

$str = "big boat"; initialize $str;
substr($str,-4) = "payments"; $str becomes "big payments"

Print

$v = sprintf("%10s \n", $str); $v gets print string; like printf
print "hello\n" Prints "hello" to standard out
printf ("%20s %4d %6.2f\n", $s, $i, $r);
 Same as "C" printf; %20s for string, 4d for
 decimal integer, %6.2f for floating point

Control Operators

sub do_it { creates subroutine with local vars $v and
 local ($v,@a); @a
 $v =1} subroutine returns last expression evaluated
local($v,$w) = @_; special char @_ assigns locals from parameters,
 elements $_[0], $_[1], $_[2], etc.

&do_it cats 5 do_it invoked with arguments (cats and 5)

if (expr) { if expr is true then list1 executed
 statement list1
} elsif (expr2) { else if expr2 is true then list2 executed
 statement list2 (can continue with more elsifs)
} else {
 statement list3 else -- when all the aboves fail execute this
} list3

expr2 if expr; if statement with order reversed
 (same for unless, while, and until)

this && that; logic and; equals: if (this) {that}
this || that; logic or; equals: unless (this) {that}

if (/a/ && /e/ && /i/ && /o/ && /u/) {print "all vowels used";}
 all conditions must be true for true;
 logical "and"

unless (expr) { executes unless expr is true
 statement list } takes elsif and else (like if)

while (expr) { while expr is true repeat execution of
 statement list } statement list

until (expr) { like while, but stops when expr is true
 statement list }

for (ini, test, incr) { initialize a variable, test to run list,
 statement list } then increment the variable

 for ($a=1; $a<=10; $a++) { print "$a";} Prints 1 through 10
 for ($a=1; $a<=$#var,$a++) {print "$a";} 1 through length @var -1

foreach $v (@list){ Repeats cmd list for each $v produced
 statement list by @list; NOTE: If you change any particular
} $v, the element changes in the array @list

 @w = (1..9);
 foreach $v(@w) { prints 1 through 9 on separate lines
 print $v\n;}

 @w = (1..9); Omits the $v; Perl assumes the default
 foreach (@w) { variable $_
 print $_;}

last ends loops: while, for, etc.
next skips to next item in loop -- while, for, etc.
redo jumps to top of loop; unlike next it doesn't
 get new item; use with last to break loop
LABEL7: label statements for next and last jumps
 for jumping out of nested loop to outer loop
last LABEL7 end nested labeled LABEL7
die "no such file"; ends program; prints message to stdout

File Operators

open (FL, "fl"); open input file fl with filehandle FL
 while (<FL>){} puts next line from file fl into $_
close (FL) closes file fl

open (OUT,">fl"); open file for output with filehandle OUT
open (AP,">>fl"); open file fl for append, filehandle AP

open (MAIL, " | mail fred@clarkson.edu");
 | Piping runs command -- here the mail cmd
 [put piping at end to grab cmd output |]

dbmopen (%var, "fl", 0666); keeps array %var in file fl
$var ($name} = time; appends time to array in fl
dbmclose(%var); 0666 sets octal file permissions

rename ($fl, "$fl.ex") renames file to file.ex

<STDIN> waits for keyboard input -- adds \n
<STDOUT>
<STDERR>
$v = <STDIN> $v gets single line input on Enter
@v = <STDIN> @v several lines; ^D to end (array context)

while (<STDIN>) { reads each line to $_
 print "$_"; } $_ is the default variable

while (<>) { diamond operator reads @ARGV from the
 print $_; } cmd line (here it prints all lines of arg files)

File Test (list is not exhaustive)

$fl = "filename" assigns a filename to a variable
if(-r $fl && -w _) Underline "_" reports on a -w without
{print "use $fl";} a new stat system call

-r readable (file or dir)
-w writable
-x executable
-o owned by user
-e exists
-z zero size (file exists)
-s nonzero size
-f file
-d directory
-l symlink
-T text file
-B binary file
-M modification age in days
-A access age in days
stat() remaining info on files

String Escapes for Double Quotes

\n newline
\t tab
\007 octal value (007 = bell)
\x7f hex value (7f = delete)
\$ literal dollar sign
\l lowercase the next letter
\L lowercase letters until \E
\u uppercase next letter
\U uppercase letters until \E

