
ANGULAR 2

Legal Disclaimer: While we have made every attempt to ensure that the information in this publication has been obtained from reliable sources, bbv Software Services (bbv) is not responsible for any errors or omissions, or for the results obtained from the use of this information. All information is provided with no guarantee of completeness or accuracy, and without warranty of any kind. In no event will bbv or its employees therefore be liable to you or anyone else for any decision made or action taken in reliance on the information in this publication. The information in this publication should not be used as a substitute for consultation with professional bbv advisors. Before making any decision or taking any action, you should consult a bbv professional. The names of actual companies and products (e.g. Google, bbv Software Services) mentioned in this publication may be the trademarks of their respective owners. ©2016 bbv Software Services
This poster is a derivative of Angular’s documentation page [2] by Google, used under CC BY 4.0. The poster is licensed under CC BY 4.0 by bbv Software Services AG.

 www.bbv.ch · info@bbv.ch

A
N

G
U

L
A

R
 2

 i
n

T
y
p
e
S
c
r
i
p
t

in TypeScript
Module

Component
{ }

Module
Service

{ }

Module
Value
3.1415

Module
Fn
λ

Template

Metadata

Component
Service

Injector

Metadata

Directive

Property
Binding

Event
Binding

Overview

Angular 2 is a framework to help us build client applications for the Web and mobile.

Core Features:

• Speed and Performance
 Angular 2 is dramatically faster than Angular 1 with support for fast initial loads through server-side pre-rendering,

 offline compile for fast start-up, and ultrafast change detection and view caching for smooth virtual scrolling and

 snappy view transitions.

• Simple and Expressive
 Make your intention clear using natural, easy-to-write syntax. Reduce complexity for your team: new,

 structure-rich templates are readable and easy to understand at a glance.

• Seamless Upgrade from Angular 1
 Upgrade your Angular 1 application at your own pace by mixing in Angular 2 components,

 directives, pipes, services and more by using the ngUpgrade APIs.

• Flexible Development
 The choice of language is up to you. In addition to full support for ES5, TypeScript, and Dart Angular 2 works

 equally well with ES2015 and other languages that compile to JavaScript.

We write applications by composing HTML templates with Angularized markup, writing component classes to manage

those templates, adding application logic in services and handing the top root component to Angular‘s bootstrapper.

Module
Component

{ }

The Module
Angular apps are modular. In general we assemble our application from many modules.

A typical module is a cohesive block of code dedicated to a single purpose. A module exports
something of value in that code, typically one thing such as a class.

Most applications have an AppComponent. By convention it‘s called app.component.ts.

When we look inside such a file we‘ll see an export statement like this one:

app/app.component.ts (excerpt)

export class AppComponent() { }

app/main.ts (excerpt)

import {AppComponent} from './app/component';

When we need a reference to AppComponent, we import it like this:

The import statement tells the system it can get an AppComponent from a module named app.component located

in a neighbouring file. The module name is often the same as the filename without its extension. Angular uses an

external module loader like SystemJs to bind all the exports and imports together. SystemJS is not the only module

loader that will work with Angular 2. Other module loaders, such as WebPack, can be swapped in instead. Which one

you take is up to you, but a module loader is crucial for every Angular application.

Component

The Component
A component controls a patch of screen real estate that we could call a view. The shell at the

application root with navigation links, the list of Todos, the Todo-editor, they're all views

controlled by components. We define a component‘s application logic – what it does to

support a view – inside a class. The class interacts with the view through an API of properties

and methods.

app/todo-list.component.ts

export class TodoListComponent implements OnInit {
 constructor(private service: TodoService) { }

 toDos: Todo[];
 selectedToDo: Todo;

 ngOnInit() {
 this.todos = this.service.getTodos();
 }

 selectTodo(todo: Todo) {
 this.selectedTodo = todo;
 }
}

Angular creates, updates and destroys components as the user moves through the application. The developer can take

action at each moment in this lifecycle through optional Lifecycle Hooks like OnInit (shown above), AfterContentInit,

AfterViewInit or OnDestroy.

Library Modules
Some modules are libraries of other modules. Angular itself ships a collec-

tion of library modules called barrels. Each Angular library is actually a

public façade over several logically related private modules.

The angular2/core library is the primary Angular library module from

which we get most of what we need. Other important library modules are

angular2/common, angular2/http, and angular2/routing. We

import what we need from an Angular library module in much the same

way as our own modules:

import {Component} from 'angular2/core';

Unlike our own components, when importing from an Angular library module, the import statement refers to the bare

module name, without a path prefix.

Component
{ }

Library Module

Directive
{ }

Value
3.1415

Fn
λ

Service
{ }

Root
Template

Root
Component

Child A
Template

Child A
Component

Grandchild
Template

Grandchild
Component

Child B
Template

Child B
Component

Template

The Template
We define a component‘s view with its companion template. A template is a form of HTML

that tells Angular how to render the component.

Here‘s a template for our TodoListComponent, extracted in its own file:

app/todo-list.component.html

<h2>Todo List</h2>

<p><i>Pick a Todo from the list</i></p>
<div *ngFor="#todo of todos" (click)="selectTodo(todo)">
 {{todo.name}}
</div>

<todo-detail *ngIf="selectedTodo" [todo]="selectedTodo"></todo-detail>

If the template isn‘t too big, we can embed it directly into the @Component metadata. Please note that such embedded

markup has to be placed between two back ticks, especially when it spans more than one line.

Like the <todo-detail> tag from the example above, which represents the view of another component, we can

arrange our components and templates in a hierarchical manner to build out our richly featured application.

Metadata

Angular Metadata
Metadata tells Angular how to process a class. The TodoListComponent is just a class. It‘s

not a component until we tell Angular about it. This is done by attaching metadata to the

class. Here‘s some metadata for TodoListComponent:

app/todo-list.component.ts (metadata)

@Component({
 selector: 'todo-list',
 templateUrl: 'app/todo-list.component.html',
 directives: [TodoDetailComponent],
 providers: [TodoService]
})
export class TodoListComponent { ... }

The @Component decorator identifies the class immediately below it as a component class. Here we see some of the

most commonly used @Component configuration options:

• selector – a css selector that tells Angular to create an instance of this component where it finds a <todo-list>

 tag in the parent HTML. If the template of the application shell contains

 <todo-list></todo-list>

 Angular inserts an instance of the TodoListComponent view between those tags.

• templateURL – the address of this component‘s template

• template – an inline HTML view directly written within the @Component decorator

• directives – an array of components that this template requires. In our sample it‘s TodoDetailComponent

 which defines the view <todo-detail>

• pipes – an array of pipes that this template requires

• providers – an array of dependency injection providers for services this component requires. Classes in this array

 are typically injected into the component‘s constructor

We apply other metadata decorators in a similar fashion to guide Angular behaviour. The @Injectable, @Input,

@Output, @RouterConfig are few of the more popular decorators.

Service

The Service
“Service“ is a broad category encompassing any value, function or feature that our applica-

tion needs. Almost anything can be a service. A service is typically a class with a narrow,

well-defined purpose. It should do something specific and do it well.

app/todo.service.ts

export class TodoService {
 constructor(
 private backend: BackendService,
 private logger: Logger) { }

 private todos:Todo[] = [];

 getTodos() {
 this.backend.getAll(Todo).then((todos:Todo[]) => {
 this.logger.log('Fetched ${result.length} todos.');
 this.todos.push(...todos); // fill cache
 });
 return this.todos;
 }
}

 There is nothing specifically Angular about services. Angular itself has no definition of a

 service. There is no ServiceBase class. Yet services are fundamental to any Angular

application. Here‘s a TodoService that fetches Todo items and returns them in a resolved promise. The TodoService

depends on a LoggerService and another BackendService that handles the server communication.

Our components are big consumers of services. They depend upon services to handle most chores. They don‘t fetch

data from the server, they don‘t validate user input, they don‘t log directly to the console. They delegate such tasks to

services. A component‘s job is to enable the user experience and nothing more. It mediates between the view

(rendered by the template) and the application logic (which often includes some notion of a “model“). A good

component presents properties and methods for data binding. It delegates everything non-trivial to services.

Directive

The Directive
Our Angular templates are dynamic. When Angular renders them, it transforms the DOM

according to the instructions given by a directive. A directive is a class with directive meta-

data. We already met one form of directive: the @Component. A component is a directive-

with-a-template and the @Component decorator is actually an @Directive with template-

oriented features. There are two other kinds of directives as well that we call “structural“ and

“attribute“ directives.

Structural directives alter the layout by adding, removing or replacing elements in the DOM:

• *ngFor tells Angular to stamp out one <div> per todo in the todos list.

• *ngIf includes the TodoDetail component only if a selected Todo exists.

Attribute directives alter the appearance or behaviour of an existing element. In templates they look like regular HTML attributes,

hence the name. The ngModel directive, which implements two-way data binding, is an example of an attribute directive:

Angular ships with a few other directives that either alter the layout structure (e.g. ngSwitch) or modify aspects of

DOM elements and components (e.g. ngStyle and ngClass).

Metadata

<div *ngFor="#todo of todos" (click)="selectTodo(todo)">
<todo-detail *ngIf="selectedTodo"></todo-detail>

<input [(ngModel)]="todo.name">

D
O

M
 /

H
TM

L

C
o

m
p

o
n

en
t{{value}}

[property] = «value»

(event) = «handler»

[(ngModel)] = «property»

Data Binding
Angular supports data binding, a mechanism for coordinat-

ing parts of a template with parts of a component. We add

binding markup to the template HTML to tell Angular how to

connect both sides. There are four forms of data binding

syntax. Each form has a direction – to the DOM, from the

DOM or in both directions – as indicated by the arrows in the

diagram. Let‘s take a variation of our TodoListComponent

again to explain the various data bindings:

• The “interpolation“ displays the component‘s todo.name property value within the <div> tags.

• The [todo] property binding passes the selectedTodo from the parent TodoListComponent to the todo

 property of the child TodoDetailComponent.

• The (click) event binding calls the component‘s selectTodo method when the user clicks on a Todo‘s name.

Two-way data binding is an important fourth form that combines property and event binding in a single notation using

the ngModel directive. Here‘s an example from the TodoDetailComponent:

In two-way data binding, a data property flows to the input box from the component as with property binding. The

user‘s changes also flow back to the component, resetting the property to the latest value, as with event binding.

<input [(ngModel)]="todo.name">

app/todo-list.component.html (variation)

<div>{{todo.name}}</div>
<todo-detail [todo]="selectedTodo"></todo-detail>
<div (click)="selectTodo(todo)"></div>

Resources
[1] Angular 2 Website
https://angular.io

[2] Angular 2 Developer Guides
https://angular.io/docs/ts/latest/guide/

[3] Pluralsight Course: Angular 2: First Look by John Papa
https://app.pluralsight.com/library/courses/angular-2-first-look

[4] John Papa: Angular 2 Style Guide
https://github.com/johnpapa/angular-styleguide/blob/master/a2/README.md

[5] bbv Blog: Angular 2
http://blog.bbv.ch/category/angular2/

[6] thoughtram Blog: Angular 2
http://blog.thoughtram.io/categories/angular-2/

[7] RxMarbles: Interactive diagrams of RX Observables
http://rxmarbles.com/

Component
{constructor(service)}

Dependency Injection
“Dependency Injection“ is a way to supply a new instance of a class with the fully

formed dependencies it requires. Most dependencies are services. Angular uses

dependency injection to provide new components with the services they need.

In TypeScript Angular can tell which service a component needs by looking at

the types of its constructor parameters. For example, the constructor of our

TodoListComponent needs the TodoService:

app/todo-list.component.ts (constructor)

constructor(private service: TodoService) { }

app/todo-list.component.ts (excerpt)

@Component({
 providers: [TodoService]
})
export class TodoListComponent { ... }

app/main.ts (excerpt)

import {bootstrap} from 'angular2/platform/browser';
import {AppComponent} from './app.component';

bootstrap(AppComponent);

app/todo-service.ts (excerpt)

@Injectable
export class TodoService { ... }

When Angular creates a component, it first asks an injector for the services that the component requires. An injector

maintains a container of service instances that it has previously created. If a requested service instance is not in the

container, the injector makes one and adds it to the container before returning the service to Angular. When all

requested services have been resolved and returned, Angular can call the component‘s constructor with those services

as arguments. This is what we mean by dependency injection. Although we can register classes at the root level while

bootstrapping the application, the preferred way is to register at component level within the @Component metadata,

in which case we get a new instance of the service with each new instance of that component and its child components.

Note: Unlike all component classes we have to mark all injectable classes with the @Injectable decorator. This is also

true for our TodoService:

An Angular application needs to be bootstrapped to make dependency injection work and hook up the application

lifecycle. This is done in our main class:

Se
rv

ice

Pipes
Every application starts out with what seems like a simple task: get data, transform it and show it to

users. Getting data could be as simple as creating a local variable or as complex as streaming data over

a WebSocket. However, when it comes to transformation, we soon discover that we desire many of the

same transformations repeatedly, for example when we need to format dates.

A pipe takes in data as input and transforms it to a desired output. We‘ll illustrate by transforming a

component's due date property into a human-friendly date:

<p>Due date of this ToDo item is {{ dueDate | date:"MM/dd/yy" }}</p>

app/exponential-strength.pipe.ts

import {Pipe, PipeTransform} from 'angular2/core';

@Pipe({name: 'exponentialStrength'})
export class ExponentialStrengthPipe implements PipeTransform {
 transform(value:number, args:string[]) : any {
 return Math.pow(value, parseInt(args[0] || '1', 10));
 }
}

app/exponential-strength.component.ts

import {Component} from 'angular2/core';
import {ExponentialStrengthPipe} from './exponential-strength.pipe';

@Component({
 selector: 'power-booster',
 template: '<p>Super power boost: {{2 | exponentialStrength: 10}}</p>',
 pipes: [ExponentialStrengthPipe]
})
export class PowerBooster { }

Inside the interpolation expression we flow the component‘s due date value through the pipe separator (|) to the date

pipe function on the right. All pipes work this way. You may also provide optional pipe parameters like the exact date

format as shown in the example above. Angular comes with a stock set of pipes such as DatePipe, UpperCase-

Pipe, LowerCasePipe, CurrencyPipe and PercentPipe. They are all immediately available for use in any

template. Of course, you can write your own custom pipes:

Now we need a component to demonstrate our pipe:

Note that we have to include our pipe in the pipes configuration option of the @Component.

Routing and Navigation
In most applications, users navigate from one view to the next as they perform application tasks. When the browser‘s

URL changes, the router looks for a corresponding route definition from which it can determine the component to

display. A router has no route definitions until we configure it. The preferred way to simultaneously create a router and

add routes is with an @RouteConfig decorator applied to the router‘s host component.

In this example, we configure the top-level AppComponent with three route definitions:

app/app.component.ts (excerpt)

@Component({ ... })
@RouteConfig([
 {path: 'projects', name: 'Projects', component: ProjectComponent},
 {path: 'todos', name: 'ToDos', component: TodoListComponent},
 {path: 'todos/:id', name: 'ToDo', component: TodoDetailComponent},
]}
export class AppComponent { }

index.html (excerpt)

<script src="node_modules/angular2/bundles/router.dev.js"></script>

template: ‘
 <nav>
 <a [routerLink]="['Projects']">Projects
 <a [routerLink]="['ToDos']">ToDos
 </nav>
 <router-outlet></router-outlet>
‘

With the routing in place, we can define the navigation in our AppComponent template:

The <router-outlet> tag defines the place where the component views will be rendered. When working with

routing and navigation, don‘t forget to include in your index.html:

HTTP Client
HTTP is the primary protocol for browser/server communication. We use the Angular HTTP client to communicate via

XMLHttpRequest (XHR) with the server. Let‘s first have a look at our TodoService:

app/todo-service.ts

import {Http, Response} from 'angular2/http';
import {Observable} from 'rxjs/observable';
import {Todo} from './Todo';

export class TodoService {
 constructor(private http: Http) { }

 private todoUrl = 'app/todos'; // URL to web api

 getTodos() {
 return this.http.get(this.todoUrl)
 .map(res => <Todo[]> res.json().data)
 .catch(this.handleError);
 }

 private handleError(error: Response) {
 console.error(error);
 return Observable.throw(error.json().error || 'Server error');
 }
}

app/todo-list.component.ts (ngOnInit)

ngOnInit() {
 this.service.getTodos()
 .subscribe(
 todos => this.todos = todos,
 error => this.errorMessages = <any>error);}

app/todo-service.ts (addTodo)

addTodo(name: string): Observable<Todo> {
 let body = JSON.stringify({ name });
 let headers = new Headers({ 'Content-Type': 'application/json' });
 let options = new RequestOptions({ headers: headers });

 return this.http.post(this.todoUrl, body, options)
 .map(res => <Todo>res.json().data)
 .catch(this.handleError);
}

app/todo-list.component.ts (addTodo)

addTodo(name: string) {
 if (!name) { return; }

 this.service.addTodo(name)
 .subscribe(
 todo => this.todos.push(todo),
 error => this.errorMessages = <any>error);
}

index.html (excerpt)

<script src="node_modules/angular2/bundles/http.dev.js"></script>
<script src="node_modules/rxjs/bundles/Rx.js"></script>

As we can see, the Json response from the server is mapped into an array of Todos with the .json() function. The

result of getTodos() is a cold observable of Todos, which means the original HTTP request won‘t go out until some-

thing subscribes to the observable. That something is our TodoListComponent:

Sending data to the server works like this:

Back in the TodoListComponent, we see that its addTodo method subscribes to the observable returned by the service‘s

addTodo. When the data arrives, it pushes the new todo object into its own todos array for presentation to the user.

When working with the HTTP client, don‘t forget to include in your index.html:

Preparation

Angular 1
Angular 2

Migration

Upgrading from Angular 1
Angular provides a library named ngUpgrade to help you run both versions of Angular in parallel. This allows you to

migrate your application step by step. In particular it allows you to use Angular 1 directives in Angular 2 components

 (upgrade) and use Angular 2 components in

 Angular 1 directives (downgrade). You‘ll find further

 information about upgrading your existing Web

 application in the official Angular 2 docs [2] and on

 the thoughtram blog [6].

